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Abstract. A quantitative model describing the large magnetostrain effect observed in several ferromagnetic
shape memory alloys such as Ni2MnGa is briefly reported.The paper contains an exact thermodynamic
consideration of the mechanical and magnetic properties of similar types of materials. As a result, the
basic mechanical state equation including magnetic field effect is directly derived from a general Maxwell
relation. It is shown that the magnetic field induced deformation effect is directly connected with the
strain dependence of magnetization. A simple model of magnetization and its dependence on the strain
is considered and applied to explain the results of experimental study of large magnetostrain effects in
Ni2MnGa.

PACS. 75.80.+q Magnetomechanical and magnetoelectric effects, magnetostriction – 75.30.Gw Magnetic
anisotropy

1 Introduction

In addition to some giant magnetostriction materials, fer-
romagnetic shape memory alloys were recently suggested
as a general way for the development of a new class of the
magnetic-field-controlled actuator materials [1–4,13,14].
It is now a goal of research projects in several groups
directed at the development of ferromagnetic alloys ex-
hibiting also a martensitic phase transition that would
allow control of large strain effect by application of a
magnetic field at constant temperature in a martensitic
state. Numerous candidate shape memory materials were
explored including Ni2MnGa, Co2MnGa, FePt CoNi, and
FeNiCoTi during the past few years [5–7]. Magnetically
driven strain effects are expected to occur in these sys-
tems. According to results reported in [8] the large strains
of 0.19% can be achieved in a magnetic field of order 8 kOe
in the tetragonal martensitic phase at 265 K of single-
crystal samples of Ni2MnGa. This strain is an order of
magnitude greater than the magnetostriction effect of the
parent, room temperature cubic phase.

Ni2MnGa is an ordered L21 ferromagnetic Heusler al-
loy having at high temperature cubic (a = 5.822 Å)
crystal structure that undergoes martensitic transforma-
tion at 276 K into a tetragonally distorted structure
with crystalline lattice parameters: a = b = 5.90 Å and
c = 5.44 Å [6]. The martensitic phase accommodates the
lattice distortion connected with transformation by for-
mation of three twin variants twinned usually on {110}
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planes and having the orientation of the tetragonal sym-
metry axes nearly parallel to three [100] directions. The
saturation value of magnetization was found to be about
475 G. The magnetization curve of the low-temperature
twinned phase usually displays a two-stage structure at
265 K [8] with a sharp crossover at about 1.7 kOe from
easy low-field magnetization below to a hard stage above
this value up to the 8 kOe saturation field value. Such
a behaviour is assumed to be connected with a different
response of different twin variants to the applied field.
The measurements usually show a definite magnetostrain
value along [100] as a function of the magnetic field ap-
plied in the same direction [8]. It is generally expected
that a large macroscopic mechanical strain induced by the
magnetic field in similar type systems is microscopically
realized trough the twin boundaries motion and redistri-
bution of different twin variants fractions in a magnetic
field. The main thermodynamic driving forces have in this
case a magnetic nature, connected with high magnetiza-
tion anisotropy and differences in magnetization free en-
ergies for different twin variants of martensite [4,10,11].

The main goal of this brief publication is to give
the right thermodynamic consideration of the mechani-
cal and magnetic properties of similar types of materi-
als and represent the quantitative model describing large
magnetostrain effect observed in several ferroelastic shape
memory alloys such as Ni2MnGa. It is shown that the
magnetic field induced deformation effect directly follows
from the general thermodynamic rules such as Maxwell
relations and connected with the strain dependence of
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magnetization. A simple model of magnetization for the
internally twinned martensitic state and its dependence on
the strain is considered and applied to explain the results
of experimental studies of large magnetostrictive effects in
Ni2MnGa.

2 General thermodynamic consideration

Consider the general thermodynamic properties of the
materials which can show both the ferroelastic and the
ferromagnetic properties. Most of the shape memory al-
loys usually display ferroelastic behaviour in the marten-
sitic state connected with redistribution of different twin
variant fractions of martensite under the external applied
stress through the motion of twin boundaries. Ferromag-
netic shape memory materials have an additional possi-
bility to activate the deformation process in a twinned
martensitic state by the application of a magnetic field
simultaneously with magnetization of the material. Ac-
cording to general thermodynamic principles both the me-
chanical and the magnetic properties of similar types of
materials can be represented by the corresponding state
equations:

σ = σ (ε, h) (1)
m = m (ε, h) (2)

where, equation (1) reflects the mechanical properties
through stress-strain σ − ε equation in the presence of
a magnetic field h, and equation (2) gives the magnetiza-
tion value m as a function of magnetic field applied h and
strain ε. Both these equations can be obtained from an
appropriate thermodynamic potential as follows:

σ (ε, h) =
∂

∂ε
G̃ (ε, h) m (ε, h) = − ∂

∂h
G̃ (ε, h) (3)

where G̃ (ε, h) = G (ε, h) − hm(ε, h), and G (ε, h) is the
specific Gibbs free energy at fixed temperature and pres-
sure conditions. Both state equations are not completely
independent functions and must satisfy known Maxwell’s
rule:

∂

∂h
σ (ε, h) = − ∂

∂ε
m (ε, h) . (4)

Integration of this equation over the magnetic field start-
ing from h = 0 at a fixed strain gives an important repre-
sentation of the mechanical state equation including mag-
netic field effects:

σ = σ0 (ε)− ∂

∂ε

h∫
0

dhm (ε, h) . (5)

According to this equation the external stress on the left
is balanced in equilibrium by both the pure mechanical
stress σ0 (ε) = σ (ε, 0) resulting from the mechanical de-
formation of the material at h = 0 and the additional
magnetic field induced stress that is represented by the

second term on the right in this equation. It is also impor-
tant to note that all the effect of the magnetic field on the
mechanical properties is directly determined by the strain
dependence of magnetization. In a particularly important
case: σ = const. = 0 one can obtain a general equation
determining magnetically induced strain (usually called a
magnetic shape memory or MSM-effect) as follows:

σ0 (ε) =
∂

∂ε

h∫
0

dhm (ε, h) (6)

and its linearized solution:

εmsm (h) =
(

dσ0

dε

)−1

ε=0

 ∂

∂ε

h∫
0

dhm (ε, h)


ε=0

(7)

that can be used when ε is much less than a martensite
lattice tetragonal distortion value ε0. Equation (7) follows
from the lowest order Taylor’s expansion on ε applied to
equation (6) which is good at ε � ε0, and usually ob-
served experimentally. According to equations (6) and (7)
the magnetization and its dependence on the strain is re-
sponsible for the MSM-effect and is the main subject for
detailed discussion and modeling.

3 The model and its application to Ni2MnGa
tetragonal martensite

Consider a typical situation corresponding to measure-
ments of large strain induced by the magnetic field in
the tetragonal internally twinned martensite of Ni2MnGa,
obtained from the austenitic single crystal studied in [8],
when the magnetic field is applied along [100] direction
of parent austenitic phase and strain measurements were
performed in the same axial direction. In this case the
crystallographic [100] [010] [001] axes for each possible
twin variant of the tetragonal martensitic phase will be
nearly parallel to the external applied field. More exactly,
additional small rotations of the tetragonal phase axes are
expected but the corresponding rotation angles can not
exceed a few degrees in the case of Ni2MnGa and may be
neglected for simplicity. Figure 1 schematically shows the
expected alignment of the applied magnetic field, crystal-
lographic orientations and magnetization curves for three
possible tetragonal phase variants.

Therefore, the magnetic field is applied along the
tetragonal symmetry axis only for one type of twin vari-
ant (which is called here the axial, or a-type) and si-
multaneously in the transversal direction in respect to
the tetragonal symmetry axes of another two (transver-
sal, or t-type) variants. The investigation of magnetization
properties of Ni2MnGa performed for a single tetragonal
variant of martensite obtained by the mechanical com-
pression method [12] has shown a considerable difference
between the magnetization curves along the tetragonal
[100] direction in comparison to another transversal [010]
and [001] directions. It was found that a tetragonal axis
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Fig. 1. Schematic representation of the magnetic field align-
ment and magnetization behaviour for three different crystal-
lographic variants of the tetragonal martensitic phase.

is the easiest magnetization direction and requires con-
siderably less value of saturation field ha than a satu-
ration field ht characterizing magnetization in two hard
transversal directions as it is schematically shown in Fig-
ure 1. In a general case the calculation of magnetization
for the material with a complicated twin microstructure
geometry requires a special approach. In this paper we
will ignore, for simplicity, a similar type problem and will
consider these effects in other publications. Taking into
account the presence of magnetic anisotropy and differ-
ence in magnetization behaviour between the axial ma(h)
and transversal mt(h) twin variants we consider a simple
model of magnetization for the multi-variant martensitic
state that gives the main contribution into magnetization
insensitive to the fine details of twin microstructure. This
model treats the multi-twin martensitic state as a com-
posite material consisting of an easy magnetization area
occupied by axial type twins and hard magnetization re-
gion of two transversal twin variants. Denoting as x the
total volume fraction of the axial twin domain and (1−x)
- transversal type twin domain fractions, respectively, one
can write the magnetization of the material as follows:

m (x, h) = xma(h) + (1− x)mt(h) (8)

where, ma = (h) and mt(h) are specific magnetization
functions for the axial and transversal variants, respec-
tively. On the other hand, the macroscopic strain along
the axial direction can be found from a similar type of
equation:

ε = xε0
a + (1− x)ε0

t =
3
2
ε0(x− 1

3
) (9)

where the diagonal matrix elements ε0
a = ε0 and ε0

t =
− 1

2ε0 represent the relative tetragonal distortion of the
martensite crystal lattice along its tetragonal axis and two
transversal directions, respectively. A compression distor-
tion ε0 = 5.4% along the tetragonal symmetry axis was
found in the case of Ni2MnGa. One can easily eliminate
the fractional dependence from these two equations and
obtain the magnetization as a function of the macroscopic
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Fig. 2. Experimental and model magnetization curves along
[001] direction that show the compression and tensile strain ef-
fect on the macroscopic magnetization of the martensitic phase
caused by the relative change of the twin variant fractions.

strain for the internally twinned martensitic state:

m (ε, h) =
{

1
3
ma(h) +

2
3
mt(h)

}
+

2
3

(ε/ε0) {ma(h)−mt(h)} . (10)

This equation immediately reproduces all the main pecu-
liarities of the experimental magnetization curve including
the sharp change of its slope at h = 1.75 kOe as indicated
in Figure 2. This singularity appears exactly at h = ha

where the easy stage of magnetization process inside of the
axial twin variants domain is finished. According to equa-
tion (10)m (ε0, h) = ma (h) andm (−ε0/2, h) = mt (h) so,
one can use this fact to obtain both the ha = 1.75 kOe and
h = 8 kOe from the experimental magnetization curves
measured in the multi-variant state. The model magne-
tization curve m (0, h) corresponding to zero strain value
shows the same type of behaviour and singularity in slope
as the experimental one. The difference between them is
caused by the second term in equation (10) that gives an
additional strain dependent contribution into the magne-
tization. This contribution is directly connected with the
MSM-effect and can be easily taken into account just after
its calculation.

One can also obtain the final equations representing
the effect of magnetic field on the strain by using basic
expressions (7) derived before from the general thermo-
dynamic consideration:

εmsm (h) =
2
3

(
ε0

dσ0

dε

)−1

ε=0

h∫
0

dh {ma(h)−mt(h)} . (11)
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4 Discussion and conclusions

As follows from this equation, two factors determine the
strain value and its field dependence. The first one is pro-
portional to the initial slope of stress-strain curve and
can be found from the usual mechanical compression test
without a magnetic field applied. The integral term re-
flects the effects of magnetic anisotropy and determines
the functional magnetic field dependence of the strain.
In particular, in the absence of magnetization anisotropy
when ma(h) = mt(h) the deformation effect also vanishes.
The saturation level of the strain is achieved at h = ht

and above where ma(h) = mt(h) = msat and where the
material has its maximal magnetization value msat. One
can easily obtain the corresponding saturation value of
the strain performing the necessary integrations in equa-
tion (11) as follows:

εmsm
sat =

1
3

(
ε0

dσ0

dε

)−1

ε=0

(ht − ha)msat. (12)

Precise quantitative estimation of the saturation strain re-
quires, in general, the corresponding mechanical testing.
Here, we will use a simple estimation of dσ0/dε ∼ σ0/ε0.
So, εmsm

sat ∼ 1
3 (σ0)−1 (ht − ha)msat where the character-

istic stress σ0 representing ferroelastic mechanical behav-
ior of the material is expected to be about of 20 MPa in
Ni2MnGa martensite. Using also the values of ht ∼ 8 kOe,
ha ∼ 1.75 kOe and msat ∼ 475 G found from the magne-
tization curve analysis one can obtain a simple estima-
tion: εmsm

sat ∼ 0.49%. The more precise estimation that fol-
lows from the mechanical testing results gives dσ0/dε ∼
(2÷ 3)σ0/ε0. Consequently, εmsm

sat ∼ (0.24÷0.16)% which
is in a better quantitative agreement with εmsm

sat ∼ 0.14%
experimental value. In order to achieve the larger magne-
tostrain effect comparable with the lattice tetragonal dis-
tortion value ε0 ∼ 5% one will need materials with a very
low σ0 ∼ 2 MPa detwinning stress value. This task can be
considered as the realistic one because the observation of
σ0 ∼ 2 MPa [6] was reported in some publications.

Figure 3 shows the field behavior of the strain that
follows from the model and its change for the different
values of the magnetic anisotropy factor k = ha/ht defined
as a ratio between the axial and transversal saturation
fields.

The dimensionless strain response εmsm (h) /εmax nor-
malized by,

εmax =
1
3

(
ε0

dσ0

dε

)−1

ε=0

htm
sat (13)

increases from zero value at k = 1 simultaneously with a
corresponding shape change and shows the maximal pos-
sible deformation effect and linear type singularity for the
low field strain behavior at k = 0. This case corresponds to
the maximally strong anisotropy when the axial saturation
field becomes infinitely small ha −→ 0 and ma(h) imme-
diately achieves its saturation level msat starting from an
arbitrary low magnetic field and then still remains equal
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Fig. 3. Magnetic anisotropy effect on the strain vs. magnetic
field behavior according to the model calculations.
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Fig. 4. Magnetostrain effect: comparison of results between
the model and the experiment

to a constant msat value during the magnetization pro-
cess. Therefore, one can conclude that a linear low field
behavior usually predicted in some previously developed
models [10,11] is directly connected with their assumption
on the complete saturation of magnetization for the axial
type twin variants. According to the present model such
a type of assumption can be physically reasonable in the
limit ha −→ 0 only. In other case the strain shows the nor-
mal parabolic type behavior in the low field h < ha region
in agreement with the experimental observations. A good
correspondence between the model and experimental re-
sults is indicated in Figure 4. We neglected here the small
hysteresis effects which are usually observed assuming to
give later the more detailed discussion of this problem by
using some new developments and quantitative descrip-
tions of hysteresis in shape memory materials.
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